Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar

نویسندگان

  • Ankita Jiwan
  • Shailendra Singh
  • Yuki Kato
  • Hiroyuki Seki
  • Tadao Kasami
  • Musbah M. Aqel
  • Pankaj Srivastava
  • Prabhat K. Mahanti
  • B. A. Deiman
  • C. W. Pleij
  • Thomas K. F. Wong
  • Y. S. Chiu
  • T. W. Lam
  • S. M. Yiu
  • Herbert H. Tsang
  • Liming Cai
  • L. Russell Malmberg
  • Yunzhou Wu
چکیده

RNA structure prediction is one of the major topics in bioinformatics. Among the various RNA structures, pseudoknots are the most complex and unique structure. Various methods have been used for modeling RNA pseudoknotted secondary structure. In this paper a new model for prediction of RNA pseudoknot structure has been proposed. In this model, features of two existing techniques, i. e. neural network and grammar are combined. The advantage of grammar, identification based on rules is combined with the strength of a neural network to learn. An Elman neural network is used to learn the context free grammar that represents a pseudoknot. This Learning grammar network further identifies if the RNA sequence contains pseudoknot or not. Learning grammar helps in reducing the drawbacks of both neural network and grammar thus increasing the overall power of identifying sequences with pseudoknots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Pseudoknots in RNA Secondary Structures: A Grammatical Inference Approach

Grammatical inference, an important field of syntactic pattern recognition, is finding wider acceptance in many practical applications like computation biology. In this work we show the use of grammatical inference techniques in identifying pseudoknots in the RNA secondary structures. Identification of RNA secondary structure is among the few structure identification problems that can be solved...

متن کامل

Prediction of RNA Pseudoknotted Secondary Structure using Stochastic Context Free Grammars (SCFG)

Pseudoknots are a frequent RNA structure that assumes essential roles for varied biocatalyst cell’s functions. One of the most challenging fields in bioinformatics is the prediction of this secondary structure based on the base-pair sequence that dictates it. Previously, a model adapted from computational linguistics – Stochastic Context Free Grammars (SCFG) – has been used to predict RNA secon...

متن کامل

Predicting RNA Secondary Structures with Pseudoknots by MCMC Sampling . — preprint —

The most probable secondary structure of an RNA molecule, given the nucleotide sequence, can be computed efficiently if a stochastic context-free grammar (SCFG) is used as the prior distribution of the secondary structure. The structures of some RNA molecules contain so-called pseudoknots. Allowing all possible configurations of pseudoknots is not compatible with context-free grammar models and...

متن کامل

شناسایی RNA های غیرکدکننده کوتاه ‌عملکردی با استفاده از روش های بیوانفورماتیکی در گوسفند و بز

MicroRNAs (miRNAs) are small non-coding RNAs that have functional roles in post-transcriptional modification. They regulate gene expression by an RNA interfering pathway through cleavage or inhibition of the translation of target mRNA. Numerous miRNAs have been described for their important functions in developmental processes in numerous animals, but there is limited information about sheep an...

متن کامل

Memory efficient alignment between RNA sequences and stochastic grammar models of pseudoknots

Stochastic Context-Free Grammars (SCFG) has been shown to be effective in modelling RNA secondary structure for searches. Our previous work (Cai et al., 2003) in Stochastic Parallel Communicating Grammar Systems (SPCGS) has extended SCFG to model RNA pseudoknots. However, the alignment algorithm requires O(n4) memory for a sequence of length n. In this paper, we develop a memory efficient algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012